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About OneNet

OneNet will provide a seamless integration of all the actors in the electricity network across Europe to create

the conditions for a synergistic operation that optimizes the overall energy system while creating an open and

fair market structure.

The project OneNet (One Network for Europe) [1] is funded through the EU’s eighth Framework Programme

Horizon 2020. It is titled “TSO – DSO Consumer: Large-scale demonstrations of innovative grid services through

demand response, storage and small-scale (RES) generation” [2] and responds to the call “Building a

low-carbon, climate resilient future (LC)” [3].

While the electrical grid is moving from being a fully centralized to a highly decentralized system, grid operators

have to adapt to this changing environment and adjust their current business model to accommodate faster

reactions and adaptive flexibility. This is an unprecedented challenge requiring an unprecedented solution. For

this reason, the two major associations of grid operators in Europe, ENTSO-E [4] and EDSO [5], have activated

their members to put together a unique consortium.

OneNet will see the participation of a consortium of over 70 partners. Key partners in the consortium include:

already mentioned ENTSO-E and EDSO, Elering, E-REDES, RWTH Aachen University, University of Comillas, VITO,

European Dynamics, Ubitech, Engineering, and the EUI’s Florence School of Regulation (Energy).

The key elements of the project are:

1. Definition of a common market design for Europe: this means standardized products and key

parameters for grid services which aim at the coordination of all actors, from grid operators to

customers;

2. Definition of a Common IT Architecture and Common IT Interfaces: this means not trying to create a

single IT platform for all the products but enabling an open architecture of interactions among several

platforms so that anybody can join any market across Europe; and

3. Large-scale demonstrators to implement and showcase the scalable solutions developed throughout

the project. These demonstrators are organized in four clusters coming to include countries in every

region of Europe and testing innovative use cases never validated before.
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List of Abbreviations and Acronyms

Acronym Meaning

AI Artificial Intelligence

DSO Distribution System Operators

ENTSO-E European Network of Transmission System Operators for Electricity

ES Spain

FR France

GPU Graphics Processing Unit

LOF Local Outlier Factor

MAD Median Absolute Deviation

TPU Tensor Processing Unit

TSO Transmission System Operator

UCTE Union for the Coordination of Transmission of Electricity
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Executive Summary

Data and analysis is increasingly becoming an integral part of the everyday electricity system and more specific

in data exchanges among Transmission System Operators (TSO), Distribution System Operators (DSO) and

consumers. With a growing emphasis on data-led decision making across different organizations, trust in the

quality of data is vital. Low quality data is propagated along the organization via erroneous data-driven

decisions. A common error-prone use case would be forecasting. Fitting forecasting models with erroneous

data would lead to predicting erroneous scenarios. With the AI data quality toolbox developed in the project

we expect to improve the quality of the data managed by the data provider.

In this deliverable we provide method description and evaluation results of the outlier detection and

imputation methods (small data). The method is based on obtaining a baseline model which represents the

common dynamics of a time series and comparing its backcasting results against measured time series.

Differences between backcast and measured time series are analyzed in order to score dissimilarity. High

dissimilar points are considered outliers. The baseline method was previewed to be based on the LSTM

autoencoders method, which is a self-supervised method based on neural networks that can build a model

representing a compression representation of a sequence of data, in this case a time series. In our context,

considering the time series supplied by ENSTO-e, we’ve analyzed multiple deep learning methods

(autoencoders, etc) to be used in baseline modeling and finally decided to use N-BEATS. The architecture of

N-BEATS has a number of desirable properties that can be useful in ENTSO-E use cases: i)Being interpretable.

It’s easier to obtain, describe and understand patterns identified by the model, ii)Applicable without

modification to a wide array of target topics. Time series in the ENTSO-E use case are from different topics (see

2.3.1.1) having different dynamics Fast to train. There’re a lot of different time series in the ENTSO-E use case

and each one has different dynamics. Because of that, we want to train a model of baseline time series of

energy events which ultimately leads to a learnt model able to de ‘normality’ as the distribution used to train

the model is different from the outliers events distribution.
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1 Introduction

Data quality services are focused on analyzing data in order to detect, identify, quantify and fix issues in the

provided data. Type and source of issues are multiple and diverse. In this specific project, the use cases are

focused on aggregated data from the European Network of Transmission System Operators for Electricity

(ENTSO-E) [1], association of grid operators in Europe, and complementary on smart grids data from other use

cases.

In order to provide a full-stack quality pipeline the outlier detection and imputation methodology evaluation

has been merged in the same deliverable. The evaluation of the outlier detection and imputation methodology

is required in order to identify which, when and how to be used.

In this deliverable the information detailed is:

- Description of the detection and imputation methods

- Description of the evaluation methods

- Evaluation results for the outliers detection method
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2 Content

2.1 Description of the detection methods

Each of the time series have specific domain properties and outliers. Although all the time series are energy

domain related, each of them has different dynamics depending on different factors. The dynamics of time

series can depend on economics, weather, logistics, etc. A customizable method is proposed to properly

support outlier detection in different time series dynamics.

Baseline based

The method is based on comparing the expected dynamics of the time series against the real ones. If the time

series is free of outliers there should be no big difference between expected and real data. If the time series

has outliers there should be a difference between expected and real data. The baseline model is used to

describe and obtain expected dynamics of the time series considering history.

We’ve analyzed multiple deep learning methods (autoencoders, etc) to be used in baseline modeling and

finally decided to use N-BEATS. The architecture of N-BEATS has a number of desirable properties [6] that can

be useful in ENTSO-E use case:

- Being interpretable. It’s easier to obtain, describe and understand patterns identified by the model

- Applicable without modification to a wide array of target topics. Time series in the ENTSO-E use case

are from different topics (see 2.3.1.1)  having different dynamics

- Fast to train. There’re a lot of different time series in the ENTSO-E use case and each one has different

dynamics

In fact, such architecture thus departs from traditional usage of recurrent networks and has several advantages

to traditional approaches [7]]:

- Faster training: all operations are parallelized on Graphics Processing Unit (GPU) o Tensor Processing

Unit (TPU), making training much faster than with recurrent networks.

- Lightweight networks: N-BEATS blocks are much more configurable and thus can yield lighter

networks, very useful for small problems or when running on embedded devices.

- Fully configurable backcast and forecast: N-BEATS can use arbitrarily long sequences in the past, and

forecast arbitrarily in the future. This is configured once for every model, depending on the problem
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N-BEATS is a deep neural architecture based on backward and forward residual links and a very deep stack of

fully-connected layers. The architecture consists of a sequence of stacks, each of which combine multiple

blocks. The blocks connect feedforward networks via forecast and backcast links. Each block sets its focus on

the residual error, which the preceding blocks could not disentangle. Each block generates a partial forecast,

with its focus set on the local characteristics of the time series. The stack aggregates the partial forecasts across

the blocks it comprises and then hands the result over to the next stack. The stack purpose is to identify

non-local patterns along the complete time axis by analyzing history patterns. Finally, the partial forecasts are

pieced together to a global forecast at the model level. See N-BEATS architecture in Figure 2.1.1

Figure 2.1.1. N-BEATS architecture (source: N-BEATS paper)

The N-BEATS  customization settings, also known as hyperparameters, are:
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Hyperparameter Description

input_size The size of the input layer

output_size The size of the output layer

n_blocks Number of blocks

fc_width The width of each fully connected layer in each block of a stack

batch_size The batch size defines the number of observations the model will
process before it updates its matrix weights

n_epochs How many training cycles it is supposed to run

There are two ways to initialize hyperparameters:

- Use default hyperparameters provided by the project

- Manual curation. Use domain knowledge of  each of the time series

- Automatic optimization. Use an optimization process to tune hyperparameters in order to maximize

accuracy. This method is the suggested one in case of available labeled data or at least quite curated

data.

Once the baseline is obtained backcasting is used in order to identify which was supposed to be the expected

dynamics in history. The expected dynamics are compared against the real in order to identify big differences.

The comparison between expected and real data is done via the analysis of the residual between both:

1) Calculate residual between expected (backcast) and real data

2) Identify anomalous values in the residuals

3) Classify anomalous values in the residuals as outliers

Identification of the anomalous values in the residuals is done using Local Outlier Factor (LOF). The LOF

algorithm is an unsupervised anomaly detection method which computes the local density deviation of a given

data point with respect to its neighbors. It considers as outliers the samples that have a substantially lower

density than their neighbors. The number of neighbors considered (parameter n_neighbors) is typically set

greater than the minimum number of samples a cluster has to contain, so that other samples can be local

outliers relative to this cluster, and smaller than the maximum number of close by samples that can potentially

be local outliers
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2.2 Description of the imputation method

Each of the time series have specific domain properties and outliers. Although all the time series are energy

domain related, each of them has different dynamics depending on different factors. The dynamics of time

series can depend on economics, weather, logistics, etc. The used imputation is based on obtaining the

expected value using the baseline model previously described in the detection method. Using baseline is

possible to backcast values and obtain values in the gaps.

The N-BEATS customization settings, also known as hyperparameters, are:

Hyperparameter Description

input_size The size of the input layer

output_size The size of the output layer

n_blocks Number of blocks

fc_width The width of each fully connected layer in each block of a stack

batch_size The batch size defines the number of observations the model will
process before it updates its matrix weights

n_epochs How many training cycles it is supposed to run

There are two ways to initialize hyperparameters:

- Use default hyperparameters provided by the project

- Manual curation. Use domain knowledge of  each of the time series

- Automatic optimization. Use an optimization process to tune hyperparameters in order to maximize

accuracy. This method is the suggested one in case of available labeled data or at least quite curated

data.
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2.3 Evaluation results

2.3.1 Data used in evaluation

2.3.1.1 Data providers

ENTSO-E transparency platform is used as the data provider to validate outlier detection algorithms. The
ENTSOE-E transparency platform provides data  grouped in seven main topics:

- Load. Data about power consumption

- Generation. Energy production and production forecasts

- Transmission. Data about power transfers over borders between areas

- Balancing. Data about Regulation energy used to keep the electrical transmission grid in balance

- Outages. Data about planned maintenances and failures inside the electrical transmission grid

- Congestion Management. Data about actions taken to relieve overloaded parts of the electrical

transmission grid

- System Operations. Data about electricity transmission system operation

The specific data used for the evaluation of the detection methods is the one described in table 2.3.1.1.
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Table 2.3.1.1 - Data selected from ENTSO-E transparency platform

Name Description Document

Type

Process

Type

Business

Type

Data unit Time

resolution

Country Amount of

series

Actual Total

Load [6.1.A]

Actual total load per bidding zone per

market time unit, the total load being

defined as equal to the sum of power

generated by plants on both TSO/DSO

network

A65 A16 MW 15 minutes

60 minutes

ES

DE

FR

3

Aggregated

Generation

per Type

[16.1.B&C]

Actual aggregated Net generation output

(MW) per market time

unit and per production type.

A75 A16 MW 60 minutes ES

DE

FR

3 x 3

Nuclear

Solar

Wind

Total

Capacity

Nominated

[12.1.B]

For every market time unit and per

direction between bidding

zones the total capacity nominated (MW)

from capacity allocated via explicit

allocations only.

A26 B08 MW 60 minutes FR 2 x bidding zone

Forecasted

Day-ahead

Transfer

Capacities

[11.1]

The forecasted NTC (MW) per direction

between bidding zones, including technical

profiles. only in NTC allocation method

A61 MW 60 minutes FR 2 x bidding zone
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2.3.1.2 Outlier detection scenarios

Synthetic outliers are used as the data provided by ENTSO-E is not already classified and has no kind of label to

be used as outlier identification. Synthetic data is an industry workaround to evaluate scenarios which are in

the domain knowledge but with no available data. Synthetic outliers are created to evaluate the model under

outlier scenarios not present in data. Outliers are domain specific but typical outlier patterns are:

- Spikes

- Plateaus

- Null values

- Anomalous patterns

The most common outlier types identified in power industry time series are:

- Global outliers. A data point is considered a global outlier if its value is far outside the entirety of the

data set in which it is found. See example in Figure  2.3.1.2.1,  2.3.1.2.2,  2.3.1.2.3
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Figure 2.3.1.2.1 - Global outlier . Spike

Figure 2.3.1.2.2 - Global outlier . Plateau

Figure 2.3.2.1.3 - Global outlier . Plateau

- Contextual outliers. Contextual outliers are data points whose value significantly deviates from other

data within the same context. The “context” is almost always temporal in time-series data, such as

records of a specific quantity over time. Values are not outside the normal global range, but are

abnormal compared to the seasonal pattern. See examples in Figure 2.3.1.2.4, 2.3.1.2.5, 2.3.1.2.6 and

2.3.1.2.7
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Figure 2.3.1.2.4 - Contextual outlier 2 day

Figure 2.3.1.2.5 - Contextual outlier 2 day

Figure 2.3.1.2.6- Contextual outlier 2 week
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Figure 2.3.1.2.7 - Contextual outlier 2 week

- Collective outliers. A subset of data points within a data set is considered anomalous if those values

are considered as a collection which deviates significantly from the entire data set, but the values of

the individual data points are not themselves anomalous in either a contextual or global sense. In time

series data, one way this can manifest is as normal peaks and valleys occurring outside of a time frame

when that seasonal sequence is normal or as a combination of time series that is in an outlier state as

a group. See some examples in Figure 2.3.1.2.8, 2.3.1.2.9, 2.3.1.2.10 and 2.3.1.2.11

Figure 2.3.1.2.8- Collective outlier 1 day
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Figure 2.3.1.2.9- Collective outlier 1 day

Figure 2.3.1.2.10- Collective outlier 2 week
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Figure 2.3.1.2.11- Collective outlier 2 week

Different gains and time lengths are applied to these typical outlier patterns in order to evaluate in which cases

the model is able to properly classify samples

Synthetic outliers used to evaluate the detection method are agreed with partners and introduced in
deliverable D1. See Table 2.3.1.2.1
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Table 2.3.1.2.1 - Specification of the outlier scenarios

Id Time serie Type of

outlier

Value (*) Season Duration Frequency (*) Pattern

1 Actual Total Load [6.1.A] Global x3 percentile %95 value in time serie Summer 1 time step 1 time Spike

2 Actual Total Load [6.1.A] Global x1.5 percentile %95 value in time serie Summer 1 time step 1 time Spike

3 Actual Total Load [6.1.A] Global x3 percentile %95 value in time serie Winter 1 time step 1 time Spike

4 Actual Total Load [6.1.A] Global x1.5 percentile %95 value in time serie Winter 1 time step 1 time Spike

5 Total Capacity Nominated

[12.1.B]

Global x3 percentile %95 value in time serie Summer 1 time step 1 time Spike

6 Total Capacity Nominated

[12.1.B]

Global x1.5 percentile %95 value in time serie Summer 1 time step 1 time Spike

7 Total Capacity Nominated

[12.1.B]

Global x3 percentile %95 value in time serie Winter 1 time step 1 time Spike

8 Total Capacity Nominated

[12.1.B]

Global x1.5 percentile %95 value in time serie Winter 1 time step 1 time Spike

9 Forecasted Day-ahead

Transfer Capacities [11.1]

Global x3 percentile %95 value in time serie Summer 1 time step 1 time Spike
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10 Forecasted Day-ahead

Transfer Capacities [11.1]

Global x1.5 percentile %95 value in time serie Summer 1 time step 1 time Spike

11 Forecasted Day-ahead

Transfer Capacities [11.1]

Global x3 percentile %95 value in time serie Winter 1 time step 1 time Spike

12 Forecasted Day-ahead

Transfer Capacities [11.1]

Global x1.5 percentile %95 value in time serie Winter 1 time step 1 time Spike

13 Actual Total Load [6.1.A] Global x3 percentile %95 value in time serie Summer 1 time step 4 times per month Spike

14 Actual Total Load [6.1.A] Global x1.5 percentile %95 value in time serie Summer 1 time step 4 times per month Spike

15 Actual Total Load [6.1.A] Global x3 percentile %95 value in time serie Winter 1 time step 4 times per month Spike

16 Actual Total Load [6.1.A] Global x1.5 percentile %95 value in time serie Winter 1 time step 4 times per month Spike

17 Total Capacity Nominated

[12.1.B]

Global x3 percentile %95 value in time serie Summer 1 time step 4 times per month Spike

18 Total Capacity Nominated

[12.1.B]

Global x1.5 percentile %95 value in time serie Summer 1 time step 4 times per month Spike

19 Total Capacity Nominated

[12.1.B]

Global x3 percentile %95 value in time serie Winter 1 time step 4 times per month Spike

20 Total Capacity Nominated

[12.1.B]

Global x1.5 percentile %95 value in time serie Winter 1 time step 4 times per month Spike
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21 Forecasted Day-ahead

Transfer Capacities [11.1]

Global x3 percentile %95 value in time serie Summer 1 time step 4 times per month Spike

22 Forecasted Day-ahead

Transfer Capacities [11.1]

Global x1.5 percentile %95 value in time serie Summer 1 time step 4 times per month Spike

23 Forecasted Day-ahead

Transfer Capacities [11.1]

Global x3 percentile %95 value in time serie Winter 1 time step 4 times per month Spike

24 Forecasted Day-ahead

Transfer Capacities [11.1]

Global x1.5 percentile %95 value in time serie Winter 1 time step 4 times per month Spike

25 Actual Total Load [6.1.A] Global x3 percentile %95 value in time serie Summer 10 time step 2 times per month Plateau

26 Actual Total Load [6.1.A] Global x1.5 percentile %95 value in time serie Summer 10 time step 2 times per month Plateau

27 Actual Total Load [6.1.A] Global x3 percentile %95 value in time serie Winter 10 time step 2 times per month Plateau

28 Actual Total Load [6.1.A] Global x1.5 percentile %95 value in time serie Winter 10 time step 2 times per month Plateau

29 Total Capacity Nominated

[12.1.B]

Global x3 percentile %95 value in time serie Summer 10 time step 2 times per month Plateau

30 Total Capacity Nominated

[12.1.B]

Global x1.5 percentile %95 value in time serie Summer 10 time step 2 times per month Plateau

31 Total Capacity Nominated

[12.1.B]

Global x3 percentile %95 value in time serie Winter 10 time step 2 times per month Plateau
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32 Total Capacity Nominated

[12.1.B]

Global x1.5 percentile %95 value in time serie Winter 10 time step 2 times per month Plateau

33 Actual Total Load [6.1.A] Contextual Random values in min-max range (month) Summer 1 day 1 time Daily

34 Actual Total Load [6.1.A] Contextual Random value in min-max range (month) Winter 1 day 1 time Daily

35 Total Capacity Nominated

[12.1.B]

Contextual Random value in min-max range (month) Summer 1 day 1 time Daily

36 Total Capacity Nominated

[12.1.B]

Contextual Random value in min-max range (month) Winter 1 day 1 time Daily

37 Forecasted Day-ahead

Transfer Capacities [11.1]

Contextual Random value in min-max range (month) Summer 1 day 1 time Daily

38 Forecasted Day-ahead

Transfer Capacities [11.1]

Contextual Random value in min-max range (month) Winter 1 day 1 time Daily

39 Actual Total Load [6.1.A] Contextual Random value in min-max range (month) Summer 1 day 2 times per month Daily

40 Actual Total Load [6.1.A] Contextual Random value in min-max range (month) Winter 1 day 2 times per month Daily

41 Total Capacity Nominated

[12.1.B]

Contextual Random value in min-max range (month) Summer 1 day 2 times per month Daily

42 Total Capacity Nominated

[12.1.B]

Contextual Random value in min-max range (month) Winter 1 day 2 times per month Daily
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43 Forecasted Day-ahead

Transfer Capacities [11.1]

Contextual Random value in min-max range (month) Summer 1 day 2 times per month Daily

44 Forecasted Day-ahead

Transfer Capacities [11.1]

Contextual Random value in min-max range (month) Winter 1 day 2 times per month Daily

45 Actual Total Load [6.1.A] Collective Random sort of daily values Summer 1 day 1 time Daily

46 Actual Total Load [6.1.A] Collective Random sort of daily values Winter 1 day 1 time Daily

47 Total Capacity Nominated

[12.1.B]

Collective Random sort of daily values Summer 1 day 1 time Daily

48 Total Capacity Nominated

[12.1.B]

Collective Random sort of daily values Winter 1 day 1 time Daily

49 Forecasted Day-ahead

Transfer Capacities [11.1]

Collective Random sort of weekly values Summer 1 day 1 time Daily

50 Forecasted Day-ahead

Transfer Capacities [11.1]

Collective Random sort of weekly values Winter 1 day 1 time Daily

51 Actual Total Load [6.1.A] Collective Random sort of daily values Summer 1 day 2 times per month Daily

52 Actual Total Load [6.1.A] Collective Random sort of daily values Winter 1 day 2 times per month Daily

53 Total Capacity Nominated

[12.1.B]

Collective Random sort of daily values Summer 1 day 2 times per month Daily

54 Total Capacity Nominated

[12.1.B]

Collective Random sort of daily values Winter 1 day 2 times per month Daily
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55 Forecasted Day-ahead

Transfer Capacities [11.1]

Collective Random sort of daily values Summer 1 day 2 times per month Daily

56 Forecasted Day-ahead

Transfer Capacities [11.1]

Collective Random sort of daily values Winter 1 day 2 times per month Daily

57 Aggregated Generation per

Type [16.1.B&C] Nuclear

Global x3 percentile %95 value in time serie Summer 1 time step 1 time Spike

58 Aggregated Generation per

Type [16.1.B&C] Nuclear

Global x1.5 percentile %95 value in time serie Summer 1 time step 1 time Spike

59 Aggregated Generation per

Type [16.1.B&C] Nuclear

Global x3 percentile %95 value in time serie Winter 1 time step 1 time Spike

60 Aggregated Generation per

Type [16.1.B&C] Nuclear

Global x1.5 percentile %95 value in time serie Winter 1 time step 1 time Spike

61 Aggregated Generation per

Type [16.1.B&C] Nuclear

Global x3 percentile %95 value in time serie Summer 1 time step 4 times per month Spike

62 Aggregated Generation per

Type [16.1.B&C] Nuclear

Global x1.5 percentile %95 value in time serie Summer 1 time step 4 times per month Spike
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63 Aggregated Generation per

Type [16.1.B&C] Nuclear

Global x3 percentile %95 value in time serie Winter 1 time step 4 times per month Spike

64 Aggregated Generation per

Type [16.1.B&C] Nuclear

Global x1.5 percentile %95 value in time serie Winter 1 time step 4 times per month Spike

65 Aggregated Generation per

Type [16.1.B&C] Nuclear

Global x3 percentile %95 value in time serie Summer 10 time step 2 times per month Plateau

66 Aggregated Generation per

Type [16.1.B&C] Nuclear

Global x1.5 percentile %95 value in time serie Summer 10 time step 2 times per month Plateau

67 Aggregated Generation per

Type [16.1.B&C] Nuclear

Global x3 percentile %95 value in time serie Winter 10 time step 2 times per month Plateau

68 Aggregated Generation per

Type [16.1.B&C] Nuclear

Global x1.5 percentile %95 value in time serie Winter 10 time step 2 times per month Plateau

69 Aggregated Generation per

Type [16.1.B&C] Nuclear

Contextual Random values in min-max range (month) Summer 1 day 1 time Daily

70 Aggregated Generation per

Type [16.1.B&C] Nuclear

Contextual Random value in min-max range (month) Winter 1 day 1 time Daily
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71 Aggregated Generation per

Type [16.1.B&C] Nuclear

Contextual Random value in min-max range (month) Summer 1 day 2 times per month Daily

72 Aggregated Generation per

Type [16.1.B&C] Nuclear

Contextual Random value in min-max range (month) Winter 1 day 2 times per month Daily

73 Aggregated Generation per

Type [16.1.B&C] Nuclear

Collective Random sort of daily values Summer 1 day 1 time Daily

74 Aggregated Generation per

Type [16.1.B&C] Nuclear

Collective Random sort of daily values Winter 1 day 1 time Daily

75 Aggregated Generation per

Type [16.1.B&C] Nuclear

Collective Random sort of daily values Summer 1 day 2 times per month Daily

76 Aggregated Generation per

Type [16.1.B&C] Nuclear

Collective Random sort of daily values Winter 1 day 2 times per month Daily

77 Aggregated Generation per

Type [16.1.B&C] Solar

Global x3 percentile %95 value in time serie Summer 1 time step 1 time Spike

78 Aggregated Generation per

Type [16.1.B&C] Solar

Global x1.5 percentile %95 value in time serie Summer 1 time step 1 time Spike
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79 Aggregated Generation per

Type [16.1.B&C] Solar

Global x3 percentile %95 value in time serie Winter 1 time step 1 time Spike

80 Aggregated Generation per

Type [16.1.B&C] Solar

Global x1.5 percentile %95 value in time serie Winter 1 time step 1 time Spike

81 Aggregated Generation per

Type [16.1.B&C] Solar

Global x3 percentile %95 value in time serie Summer 1 time step 4 times per month Spike

82 Aggregated Generation per

Type [16.1.B&C] Solar

Global x1.5 percentile %95 value in time serie Summer 1 time step 4 times per month Spike

83 Aggregated Generation per

Type [16.1.B&C] Solar

Global x3 percentile %95 value in time serie Winter 1 time step 4 times per month Spike

84 Aggregated Generation per

Type [16.1.B&C] Solar

Global x1.5 percentile %95 value in time serie Winter 1 time step 4 times per month Spike

85 Aggregated Generation per

Type [16.1.B&C] Solar

Global x3 percentile %95 value in time serie Summer 10 time step 2 times per month Plateau

86 Aggregated Generation per

Type [16.1.B&C] Solar

Global x1.5 percentile %95 value in time serie Summer 10 time step 2 times per month Plateau
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87 Aggregated Generation per

Type [16.1.B&C] Solar

Global x3 percentile %95 value in time serie Winter 10 time step 2 times per month Plateau

88 Aggregated Generation per

Type [16.1.B&C] Solar

Global x1.5 percentile %95 value in time serie Winter 10 time step 2 times per month Plateau

89 Aggregated Generation per

Type [16.1.B&C] Solar

Contextual Random values in min-max range (month) Summer 1 day 1 time Daily

90 Aggregated Generation per

Type [16.1.B&C] Solar

Contextual Random value in min-max range (month) Winter 1 day 1 time Daily

91 Aggregated Generation per

Type [16.1.B&C] Solar

Contextual Random value in min-max range (month) Summer 1 day 2 times per month Daily

92 Aggregated Generation per

Type [16.1.B&C] Solar

Contextual Random value in min-max range (month) Winter 1 day 2 times per month Daily

93 Aggregated Generation per

Type [16.1.B&C] Solar

Collective Random sort of daily values Summer 1 day 1 time Daily

94 Aggregated Generation per

Type [16.1.B&C] Solar

Collective Random sort of daily values Winter 1 day 1 time Daily
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95 Aggregated Generation per

Type [16.1.B&C] Solar

Collective Random sort of daily values Summer 1 day 2 times per month Daily

96 Aggregated Generation per

Type [16.1.B&C] Solar

Collective Random sort of daily values Winter 1 day 2 times per month Daily

97 Aggregated Generation per

Type [16.1.B&C] WindOn

Global x3 percentile %95 value in time serie Summer 1 time step 1 time Spike

98 Aggregated Generation per

Type [16.1.B&C] WindOn

Global x1.5 percentile %95 value in time serie Summer 1 time step 1 time Spike

99 Aggregated Generation per

Type [16.1.B&C] WindOn

Global x3 percentile %95 value in time serie Winter 1 time step 1 time Spike

100 Aggregated Generation per

Type [16.1.B&C] WindOn

Global x1.5 percentile %95 value in time serie Winter 1 time step 1 time Spike

101 Aggregated Generation per

Type [16.1.B&C] WindOn

Global x3 percentile %95 value in time serie Summer 1 time step 4 times per month Spike

102 Aggregated Generation per

Type [16.1.B&C] WindOn

Global x1.5 percentile %95 value in time serie Summer 1 time step 4 times per month Spike
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103 Aggregated Generation per

Type [16.1.B&C] WindOn

Global x3 percentile %95 value in time serie Winter 1 time step 4 times per month Spike

104 Aggregated Generation per

Type [16.1.B&C] WindOn

Global x1.5 percentile %95 value in time serie Winter 1 time step 4 times per month Spike

105 Aggregated Generation per

Type [16.1.B&C] WindOn

Global x3 percentile %95 value in time serie Summer 10 time step 2 times per month Plateau

106 Aggregated Generation per

Type [16.1.B&C] WindOn

Global x1.5 percentile %95 value in time serie Summer 10 time step 2 times per month Plateau

107 Aggregated Generation per

Type [16.1.B&C] WindOn

Global x3 percentile %95 value in time serie Winter 10 time step 2 times per month Plateau

108 Aggregated Generation per

Type [16.1.B&C] WindOn

Global x1.5 percentile %95 value in time serie Winter 10 time step 2 times per month Plateau

109 Aggregated Generation per

Type [16.1.B&C] WindOn

Contextual Random values in min-max range (month) Summer 1 day 1 time Daily

110 Aggregated Generation per

Type [16.1.B&C] WindOn

Contextual Random value in min-max range (month) Winter 1 day 1 time Daily
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111 Aggregated Generation per

Type [16.1.B&C] WindOn

Contextual Random value in min-max range (month) Summer 1 day 2 times per month Daily

112 Aggregated Generation per

Type [16.1.B&C] WindOn

Contextual Random value in min-max range (month) Winter 1 day 2 times per month Daily

113 Aggregated Generation per

Type [16.1.B&C] WindOn

Collective Random sort of daily values Summer 1 day 1 time Daily

114 Aggregated Generation per

Type [16.1.B&C] WindOn

Collective Random sort of daily values Winter 1 day 1 time Daily

115 Aggregated Generation per

Type [16.1.B&C] WindOn

Collective Random sort of daily values Summer 1 day 2 times per month Daily

116 Aggregated Generation per

Type [16.1.B&C] WindOn

Collective Random sort of daily values Winter 1 day 2 times per month Daily

(*) Syntax of the value is x times the percentile of the time serie (ie x2 percentile %95 value, means that the outlier value will be 2 times the percentile %95 calculated over

the specific time interval of the time serie

Copyright 2020 OneNet

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 957739

Page 31



2.3.1.3 Imputation scenarios

Synthetic gaps are used as the data provided by ENTSO-E. Synthetic data is an industry workaround to evaluate scenarios which are in the domain knowledge but with no

available data. Synthetic gaps are created to evaluate the model under gaps scenarios not present in data. Gaps are domain specific but typical gap patterns are:

- Multiple continuous days gaps. Five full day  gaps used

- Multiple non-continuous days gaps. Three full day gaps used with a filled days between each

- Partial days. Three partial day gaps (12:00 to 23:00)  used with a filled days between each

- Single hours gaps. . Three single hour  gaps (12:00 to 13:00)  used with a filled days between each

See  synthetic gaps summary in Table 2.3.1.3.1
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Table 2.3.1.3.1 - Specification of gap scenarios

Id Time serie Type of gap Season Duration Pattern

1 Actual Total Load [6.1.A] five_days winter, spring, summer, autumn 5 days 24 hours gap

2 Actual Total Load [6.1.A] single_days winter, spring, summer, autumn 3 days 24 hours gap

3 Actual Total Load [6.1.A] partial_day winter, spring, summer, autumn 3 days 12 hours gap

4 Actual Total Load [6.1.A] single_hours winter, spring, summer, autumn 3 days 1 hour gap

5 Total Capacity Nominated

[12.1.B]

five_days winter, spring, summer, autumn 5 days 24 hours gap

6 Total Capacity Nominated

[12.1.B]

single_days winter, spring, summer, autumn 3 days 24 hours gap

7 Total Capacity Nominated

[12.1.B]

partial_day winter, spring, summer, autumn 3 days 12 hours gap

8 Total Capacity Nominated

[12.1.B]

single_hours winter, spring, summer, autumn 3 days 1 hour gap

9 Forecasted Day-ahead

Transfer Capacities [11.1]

five_days winter, spring, summer, autumn 5 days 24 hours gap

10 Forecasted Day-ahead

Transfer Capacities [11.1]

single_days winter, spring, summer, autumn 3 days 24 hours gap
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Id Time serie Type of gap Season Duration Pattern

11 Forecasted Day-ahead

Transfer Capacities [11.1]

partial_day winter, spring, summer, autumn 3 days 12 hours gap

12 Forecasted Day-ahead

Transfer Capacities [11.1]

single_hours winter, spring, summer, autumn 3 days 1 hour gap

13 Aggregated Generation per

Type [16.1.B&C] Nuclear

five_days winter, spring, summer, autumn 5 days 24 hours gap

14 Aggregated Generation per

Type [16.1.B&C] Nuclear

single_days winter, spring, summer, autumn 3 days 24 hours gap

15 Aggregated Generation per

Type [16.1.B&C] Nuclear

partial_day winter, spring, summer, autumn 3 days 12 hours gap

16 Aggregated Generation per

Type [16.1.B&C] Nuclear

single_hours winter, spring, summer, autumn 3 days 1 hour gap

17 Aggregated Generation per

Type [16.1.B&C] Solar

five_days winter, spring, summer, autumn 5 days 24 hours gap
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Id Time serie Type of gap Season Duration Pattern

18 Aggregated Generation per

Type [16.1.B&C] Solar

single_days winter, spring, summer, autumn 3 days 24 hours gap

19 Aggregated Generation per

Type [16.1.B&C] Solar

partial_day winter, spring, summer, autumn 3 days 12 hours gap

20 Aggregated Generation per

Type [16.1.B&C] Solar

single_hours winter, spring, summer, autumn 3 days 1 hour gap

Copyright 2020 OneNet

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 957739

Page 36



Copyright 2020 OneNet

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 957739

Page 37



2.3.2 Quality evaluation indicators

2.3.2.1 Outlier detection

During the initial data exploration some organic potential outliers were identified. As the data provided is not

labeled an unsupervised outlier method was proposed. The potential presence of non-labeled outliers in the

training data can corrupt the results of the outlier detection methodology. The evaluation of the outlier

detection algorithms using synthetic scenarios cannot be only based on the F1-score as the accuracy

component would consider true positive outliers in the original as false positives. Recall (see Figure 2.3.2.1.1) is

used In the evaluation of the outlier detection method using the synthetic scenarios recall . Recall will be the

main indicator and accuracy will be analyzed in each specific case.

Figure 2.3.2.1.1. F1 description [8]
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2.3.2.2 Imputation

As no labeled data is available the evaluation is done using forecasting evaluation and synthetic gaps data

evaluation. Synthetic gaps are created analyzing the properties of domain specific outliers (duration, interval,

etc). Synthetic gaps are removed from the time series so missing time points are present in data. Imputation is

done over the missing points and results are compared against real measurements.

The evaluation criteria used for both forecasting and synthetic outliers is nRMSE (Normalized Root Mean

Square Error):

2.4 Evaluation results

2.4.1 Outlier detection evaluation

The results of the evaluation method previously described is presented as benchmarking analysis.

Benchmarking has been done to compare the results of the outlier detection algorithm against other methods

used in the industry.

- Local Outlier Factor (LOF) [9] Already introduced in baseline model residual analysis

- Median Absolute Deviation (MAD) [10]. The Median Absolute Deviation is a robust measure of the

variability of a univariate sample of quantitative data. It can also refer to the population parameter

that is estimated by the MAD calculated from a sample. For a univariate data set X1, X2, ..., Xn, the

MAD is defined as the median of the absolute deviations from the data's

See recall benchmarking results below in Table 2.4.1.1

Some initial considerations are required:

- Manual curation of positives is required in order to calculate precision so F1-score. Recall is used
instead

- Baseline based models are not automatically tuned to obtain best recall. Hyperparameters are
manually curated to make it easier to describe the kind of potential outliers detected by the model.
See samples below to identify kind of anomalies detected
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Table 2.4.1.1  - Specification of the outlier scenarios

Time Serie Type of Outlier LOF MAD Baseline Based

ActualTotalLoad global_spike_plateau 1 1 1

ActualTotalLoad contextual 0.04 0 0.52

ActualTotalLoad collective 0 0 0.3

AggregatedGenerationPerType_NUCLEAR global_spike_plateau 1 1 0.89

AggregatedGenerationPerType_NUCLEAR contextual 0.12 0 0.42

AggregatedGenerationPerType_NUCLEAR collective 0 0 0.17

AggregatedGenerationPerType_SOLAR global_spike_plateau 0.4 1 0.9

AggregatedGenerationPerType_SOLAR contextual 0.04 0.6 0.55

AggregatedGenerationPerType_SOLAR collective 0 0.44 0.35

ForecastedDayAheadTransferCapacities global_spike_plateau 1 1 1

ForecastedDayAheadTransferCapacities contextual 0.82 0 0.0

ForecastedDayAheadTransferCapacities collective 0 0 0.0

TotalCapacityNominated global_spike_plateau 1 1 0.78

TotalCapacityNominated contextual 0.03 0 0.2

TotalCapacityNominated collective 0.01 0 0.4

Multiple examples of outlier detection method are available at Appendix A - Outlier detection evaluation
results

2.4.2 Imputation evaluation

Results of imputation are not available at the moment of this Deliverable. We defined as a major priority to test
and validate by ENTSO-e the Outliers methods, and the big data sample imputation model. We plan refining of
methods, including imputation for small data, at the moment when generate the D6.
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1 Conclusions

Conclusions regarding outlier detection:

- Manual curation of positives  is required in order to calculate precision so F1-score
- Accuracy is highly related to the properties of the time series. As it was expected, high stochastic time

series have worse results.
- Accuracy in global spike and plateau outliers is quite good in all methods
- Detection in contextual and collective outliers is mainly working in time series with clear patterns and

trends like ActualToalLoad or AggregatedGenerationPerType. LOF could work under some specific
time series properties.

- Pattern based algorithms described in D3 provides better results in time series like
ForecastedDayAheadTransferCapacities and TotalCapacityNominated

- Baseline based algorithms detects potential (false/true) positives which should be manually reviewed
- Automatic hyperparameter tuning must be used to improve the results once labeled data is available
- Hyperparameter tuning can be used to generate different kinds of outlier signals. Soft and strict

hyperparameter tuning can be used to create warning and severe outliers
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2 Appendix

2.1 Outlier detection evaluation results

The results per each kind of time series introduced in the evaluation description are displayed below. The red
dots are the predicted outliers detected in the time series by the outlier detection.

ActualTotalLoad.global_spike_plateau

LOF

MAD

Baseline based
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ActualTotalLoad.contextual

LOF

MAD

Baseline based
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ActualTotalLoad.collective

LOF

MAD

Baseline based
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AggregatedGenerationPerType_NUCLEAR.global_spike_plateau

LOF

MAD

Baseline based
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AggregatedGenerationPerType_NUCLEAR.contextual

LOF

MAD

Baseline based
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AggregatedGenerationPerType_NUCLEAR.collective

LOF

MAD

Baseline based
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AggregatedGenerationPerType_SOLAR.global_spike_plateau

LOF

MAD

Baseline based
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AggregatedGenerationPerType_SOLAR.contextual

LOF

MAD

Baseline based
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AggregatedGenerationPerType_SOLAR.collective

LOF

MAD

Baseline based
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TotalCapacityNominated.global_spike_plateau

LOF

MAD

Baseline based
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TotalCapacityNominated.contextual

LOF

MAD

Baseline based
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TotalCapacityNominated.collective

LOF

MAD

Baseline based
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4 Glossary

Capacity. Capacity is the rated continuous load-carrying ability of generation, transmission, or other electrical

equipment, expressed in megawatts (MW) for active power or megavolt-amperes (MVA) apparent power.

Demand - Consumption. Demand is the rate at which electric power is delivered to or by a system or part of a

system, generally expressed in kilowatts (kW) or megawatts (MW), at a given instant or averaged over any

designated interval of time.

Deep Learning: Deep learning is a class of machine learning algorithms that  uses multiple layers to

progressively extract higher-level features from the raw input. For example, in image processing, lower layers

may identify edges, while higher layers may identify the concepts relevant to a human such as digits or letters

or faces [11].

Precision. A metric for classification models. Precision identifies the frequency with which a model was correct

when predicting the positive class.

Recall. A metric for classification models that described how many did the model correctly identify out of all

the possible positive classes.
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This paper reflects only the author’s view and the Innovation and Networks Executive Agency (INEA) is not

responsible for any use that may be made of the information it contains.
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