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About OneNet 

The project OneNet (One Network for Europe) will provide a seamless integration of all the actors in the 

electricity network across Europe to create the conditions for a synergistic operation that optimizes the overall 

energy system while creating an open and fair market structure. 

OneNet is funded through the EU’s eighth Framework Programme Horizon 2020, “TSO – DSO Consumer: Large-

scale demonstrations of innovative grid services through demand response, storage and small-scale (RES) 

generation” and responds to the call “Building a low-carbon, climate resilient future (LC)”. 

As the electrical grid moves from being a fully centralized to a highly decentralized system, grid operators have 

to adapt to this changing environment and adjust their current business model to accommodate faster reactions 

and adaptive flexibility. This is an unprecedented challenge requiring an unprecedented solution. The project 

brings together a consortium of over seventy partners, including key IT players, leading research institutions and 

the two most relevant associations for grid operators. 

The key elements of the project are: 

1. Definition of a common market design for Europe: this means standardized products and key 

parameters for grid services which aim at the coordination of all actors, from grid operators to 

customers;  

2. Definition of a Common IT Architecture and Common IT Interfaces: this means not trying to create a 

single IT platform for all the products but enabling an open architecture of interactions among several 

platforms so that anybody can join any market across Europe; and 

3. Large-scale demonstrators to implement and showcase the scalable solutions developed throughout 

the project. These demonstrators are organized in four clusters coming to include countries in every 

region of Europe and testing innovative use cases never validated before. 
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Acronym Meaning 

AI Artificial Intelligence 

DSO Distribution System Operators 

ENTSO-E European Network of Transmission System Operators for Electricity 

EDSO European Distribution System Operators 

E-REDES Electricity distributor of the EDP Group 

VITO  Flemish research organisation in the area of cleantech and sustainable development. 

ES Spain 

FR France 

GPU Graphics Processing Unit 

LOF Local Outlier Factor 

MAD Median Absolute Deviation 

TPU Tensor Processing Unit 

TSO Transmission System Operator 

UCTE Union for the Coordination of Transmission of Electricity 

N-Beats Neural Basis Expansion Analysis Method for interpretable Time Series 
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Executive Summary 

Data and analysis is increasingly becoming an integral part of the everyday electricity system and more specific 

in data exchanges among Transmission System Operators (TSO), Distribution System Operators (DSO) and 

consumers. With a growing emphasis on data-led decision making across different organizations, trust in the 

quality of data is vital. Low quality data is propagated along the organization via erroneous data-driven decisions. 

A common error-prone use case would be forecasting. Fitting forecasting models with erroneous data would 

lead to predicting erroneous scenarios. With the AI data quality toolbox developed in the project we expect to 

improve the quality of the data managed by the data provider. 

In this deliverable we provide method description and evaluation results of the outlier detection and 

imputation methods (small data). The method is based on obtaining a baseline model which represents the 

common dynamics of a time series and comparing its backcasting results against measured time series. 

Differences between backcast and measured time series are analysed in order to score dissimilarity. High 

dissimilar points are considered outliers. The baseline method was previewed to be based on the LSTM 

autoencoders method, which is a self-supervised method based on neural networks that can build a model 

representing a compression representation of a sequence of data, in this case a time series. In our context, 

considering the time series supplied by ENSTO-e, we’ve analysed multiple deep learning methods 

(autoencoders, etc) to be used in baseline modelling and finally decided to use N-BEATS.  The architecture of N-

BEATS has a number of desirable properties that can be useful in ENTSO-E use cases: i) Being interpretable. It’s 

easier to obtain, describe and understand patterns identified by the model, ii) Applicable without modification 

to a wide array of target topics. Time series in the ENTSO-E use case are from different topics (see 2.3.1.1) having 

different dynamics Fast to train. There’re a lot of different time series in the ENTSO-E use case and each one has 

different dynamics. Because of that, we want to train a model of baseline time series of energy events which 

ultimately leads to a learnt model able to detect ‘normality’ as the distribution used to train the model is 

different from the outliers events distribution. 
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1 Introduction 

Data quality services are focused on analysing data in order to detect, identify, quantify and fix issues in the 

provided data.  Type and source of issues are multiple and diverse. In this specific project, the use cases are 

focused on aggregated data from the European Network of Transmission System Operators for Electricity 

(ENTSO-E) [1], association of grid operators in Europe, and complementary on smart grids data from other use 

cases out of the OneNet Project. More specifically, we are using hourly electricity data consumption from our 

own database, which is formed by 100.000 residential consumers of Spain, to pre-evaluate the accuracy of the 

method.   

In order to provide a full-stack quality pipeline the outlier detection and imputation methodology evaluation 

has been merged in the same deliverable. The evaluation of the outlier detection and imputation methodology 

is required in order to identify which, when and how to be used. 

In this deliverable the information detailed is: 

• Description of the detection and imputation methods. 

• Description of the evaluation methods. 

• Evaluation results for the outliers detection method. 

• Evaluation results for the imputation method. 

 



 

 

Copyright 2023 OneNet 

This project has received funding from the European Union’s Horizon 2020  
research and innovation programme under grant agreement No 957739      

Page 8  

 

2 Content 

2.1 Description of the detection methods 

Each of the time series have specific domain properties and outliers. Although all the time series are energy 

domain related, each of them has different dynamics depending on different factors. The dynamics of time series 

can depend on economics, weather, logistics, etc. A customizable method is proposed to properly support 

outlier detection in different time series dynamics. 

Baseline based 

The method is based on comparing the expected dynamics of the time series against the real ones. If the 

time series is free of outliers there should be no big difference between expected and real data. If the time series 

has outliers there should be a difference between expected and real data. The baseline model is used to describe 

and obtain expected dynamics of the time series considering history. 

We’ve analysed multiple deep learning methods (autoencoders, etc) to be used in baseline modelling and 

finally decided to use N-BEATS.  The architecture of N-BEATS has a number of desirable properties [1] that can 

be useful in ENTSO-E use case: 

- Being interpretable. It’s easier to obtain, describe and understand patterns identified by the model 

- Applicable without modification to a wide array of target topics. Time series in the ENTSO-E use case 

are from different topics (see 2.3.1.1)  having different dynamics 

- Fast to train. There’re a lot of different time series in the ENTSO-E use case and each one has different 

dynamics 

In fact, such architecture thus departs from traditional usage of recurrent networks and has several 

advantages to traditional approaches [2]: 

- Faster training: all operations are parallelized on Graphics Processing Unit (GPU) o Tensor Processing 

Unit (TPU), making training much faster than with recurrent networks. 

- Lightweight networks: N-BEATS blocks are much more configurable and thus can yield lighter networks, 

very useful for small problems or when running on embedded devices. 

- Fully configurable backcast and forecast: N-BEATS can use arbitrarily long sequences in the past, and 

forecast arbitrarily in the future. This is configured once for every model, depending on the problem 
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N-BEATS is a deep neural architecture based on backward and forward residual links and a very deep stack 

of fully-connected layers. The architecture consists of a sequence of stacks, each of which combine multiple 

blocks. The blocks connect feedforward networks via forecast and backcast links. Each block sets its focus on the 

residual error, which the preceding blocks could not disentangle. Each block generates a partial forecast, with 

its focus set on the local characteristics of the time series. The stack aggregates the partial forecasts across the 

blocks it comprises and then hands the result over to the next stack. The stack purpose is to identify non-local 

patterns along the complete time axis by analyzing history patterns. Finally, the partial forecasts are pieced 

together to a global forecast at the model level. See N-BEATS architecture in Figure 2.1.1 

 

 

Figure 2.1.1. N-BEATS architecture (source: N-BEATS paper) 

The N-BEATS customization settings, also known as hyperparameters, are: 

Hyperparameter Description 

input_size The size of the input layer 

output_size The size of the output layer 

https://arxiv.org/abs/1905.10437
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n_blocks Number of blocks 

fc_width The width of each fully connected layer in each block of a stack 

batch_size The batch size defines the number of observations the model will 
process before it updates its matrix weights 

n_epochs How many training cycles it is supposed to run 

 

There are two ways to initialize hyperparameters: 

- Use default hyperparameters provided by the project 

- Manual curation. Use domain knowledge of each of the time series 

- Automatic optimization. Use an optimization process to tune hyperparameters in order to maximize 

accuracy. This method is the suggested one in case of available labelled data or at least quite curated 

data. 

Once the baseline is obtained backcasting is used in order to identify which was supposed to be the expected 

dynamics in history. The expected dynamics are compared against the real in order to identify big differences. 

The comparison between expected and real data is done via the analysis of the residual between both: 

1) Calculate residual between expected (backcast) and real data 

2) Identify anomalous values in the residuals 

3) Classify anomalous values in the residuals as outliers 

Identification of the anomalous values in the residuals is done using Local Outlier Factor (LOF). The LOF 

algorithm is an unsupervised anomaly detection method which computes the local density deviation of a given 

data point with respect to its neighbours. It considers as outliers the samples that have a substantially lower 

density than their neighbours. The number of neighbours considered (parameter n_neighbours) is typically set  

greater than the minimum number of samples a cluster has to contain, so that other samples can be local outliers 

relative to this cluster, and  smaller than the maximum number of close by samples that can potentially be local 

outliers. 

  



 

 

Copyright 2023 OneNet 

This project has received funding from the European Union’s Horizon 2020  
research and innovation programme under grant agreement No 957739      

Page 11  

 

2.2 Description of the imputation method 

Each of the time series have specific domain properties and outliers. Although all the time series are energy 

domain related, each of them has different dynamics depending on different factors. The dynamics of time series 

can depend on economics, weather, logistics, etc.  The used imputation is based on obtaining the expected value 

using the baseline model previously described in the detection method. Using baseline is possible to backcast 

values and obtain values in the gaps. 

The N-BEATS customization settings, also known as hyperparameters, are: 

 

Hyperparameter Description 

input_size The size of the input layer 

output_size The size of the output layer 

n_blocks Number of blocks 

fc_width The width of each fully connected layer in each block of a stack 

batch_size The batch size defines the number of observations the model will 
process before it updates its matrix weights 

n_epochs How many training cycles it is supposed to run 

 

There are two ways to initialize hyperparameters: 

- Use default hyperparameters provided by the project 

- Manual curation. Use domain knowledge of  each of the time series 

- Automatic optimization. Use an optimization process to tune hyperparameters in order to maximize 

accuracy. This method is the suggested one in case of available labeled data or at least quite curated 

data. 
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2.3 Evaluation results 

2.3.1 Data used in evaluation 

2.3.1.1 Data providers 

ENTSO-E transparency platform is used as the data provider to validate outlier detection algorithms. The 

ENTSOE-E transparency platform provides data grouped in seven main topics: 

- Load. Data about power consumption 

- Generation. Energy production and production forecasts 

- Transmission. Data about power transfers over borders between areas 

- Balancing. Data about Regulation energy used to keep the electrical transmission grid in balance 

- Outages. Data about planned maintenances and failures inside the electrical transmission grid 

- Congestion Management. Data about actions taken to relieve overloaded parts of the electrical 

transmission grid 

- System Operations. Data about electricity transmission system operation 

The specific data used for the evaluation of the detection methods is the one described in table 2.3.1.1.



 

 

Copyright 2023 OneNet 

This project has received funding from the European Union’s Horizon 2020  
research and innovation programme under grant agreement No 957739      

Page 13  

 

Table 2.3.1.1 - Data selected from ENTSO-E transparency platform 

Name Description Document 
Type 

Process 
Type 

Business 
Type 

Data unit Time 
resolution 

Country Amount of series 

Actual Total 
Load [6.1.A] 

Actual total load per bidding zone per 
market time unit, the total load being 
defined as equal to the sum of power 
generated by plants on both TSO/DSO 
network 

A65 A16  MW 15 minutes 

 

60 minutes 

ES 

DE 

FR 

3 

Aggregated 
Generation 
per Type 
[16.1.B&C] 

Actual aggregated Net generation output 
(MW) per market time 

unit and per production type. 

A75 A16  MW 60 minutes ES 

DE 

FR 

3 x 3 

Nuclear 

Solar 

Wind 

Total 
Capacity 
Nominated 
[12.1.B] 

For every market time unit and per direction 
between bidding 

zones the total capacity nominated (MW) 
from capacity allocated via explicit 
allocations only. 

A26  B08 MW 60 minutes 

 

 

FR 2 x bidding zone 

Forecasted 
Day-ahead 
Transfer 
Capacities 
[11.1] 

The forecasted NTC (MW) per direction 
between bidding zones, including technical 
profiles. only in NTC allocation method 

A61   MW 60 minutes FR 2 x bidding zone 
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2.3.1.2 Outlier detection scenarios 

Synthetic outliers are used as the data provided by ENTSO-E is not already classified and has no kind of label 

to be used as outlier identification. Synthetic data is an industry workaround to evaluate scenarios which are in 

the domain knowledge but with no available data. Synthetic outliers are created to evaluate the model under 

outlier scenarios not present in data. Outliers are domain specific but typical outlier patterns are: 

- Spikes 

- Plateaus 

- Null values 

- Anomalous patterns 

The most common outlier types identified in power industry time series are: 

- Global outliers. A data point is considered a global outlier if its value is far outside the entirety of the 

data set in which it is found. See example in Figure 2.3.1.2.1,  2.3.1.2.2,  2.3.1.2.3 

 

 

Figure 2.3.1.2.1 - Global outlier . Spike 
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Figure 2.3.1.2.2 - Global outlier. Plateau 

 

Figure 2.3.2.1.3 - Global outlier. Plateau 

- Contextual outliers. Contextual outliers are data points whose value significantly deviates from other 

data within the same context. The “context” is almost always temporal in time-series data, such as 

records of a specific quantity over time. Values are not outside the normal global range, but are 

abnormal compared to the seasonal pattern. See examples in Figure 2.3.1.2.4, 2.3.1.2.5, 2.3.1.2.6 and 

2.3.1.2.7 
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Figure 2.3.1.2.4 - Contextual outlier 2 day 

 

Figure 2.3.1.2.5 - Contextual outlier 2 day 

 

 

Figure 2.3.1.2.6- Contextual outlier 2 week 
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Figure 2.3.1.2.7 - Contextual outlier 2 week 

- Collective outliers. A subset of data points within a data set is considered anomalous if those values 

are considered as a collection which deviates significantly from the entire data set, but the values of 

the individual data points are not themselves anomalous in either a contextual or global sense. In time 

series data, one way this can manifest is as normal peaks and valleys occurring outside of a time frame 

when that seasonal sequence is normal or as a combination of time series that is in an outlier state as 

a group. See some examples in Figure 2.3.1.2.8, 2.3.1.2.9, 2.3.1.2.10 and 2.3.1.2.11 

 

Figure 2.3.1.2.8- Collective outlier 1 day 
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Figure 2.3.1.2.9- Collective outlier 1 day 

 

 

Figure 2.3.1.2.10- Collective outlier 2 week 

 

Figure 2.3.1.2.11- Collective outlier 2 week 
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Different gains and time lengths are applied to these typical outlier patterns in order to evaluate in which 

cases the model is able to properly classify samples 

Synthetic outliers used to evaluate the detection method are agreed with partners and introduced in 

deliverable D1. See Table 2.3.1.2.1
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Table 2.3.1.2.1  - Specification of the outlier scenarios 

Id Time series Type of 
outlier 

Value (*) Season Duration Frequency (*) Pattern 

1 Actual Total Load [6.1.A] Global x3 percentile %95 value in time series Summer 1 time step 1 time Spike 

2 Actual Total Load [6.1.A] Global x1.5 percentile %95 value in time series Summer 1 time step 1 time Spike 

3 Actual Total Load [6.1.A] Global x3 percentile %95 value in time series Winter 1 time step 1 time Spike 

4 Actual Total Load [6.1.A] Global x1.5 percentile %95 value in time series Winter 1 time step 1 time Spike 

5 Total Capacity Nominated 
[12.1.B] 

Global x3 percentile %95 value in time series Summer 1 time step 1 time Spike 

6 Total Capacity Nominated 
[12.1.B] 

Global x1.5 percentile %95 value in time series Summer 1 time step 1 time Spike 

7 Total Capacity Nominated 
[12.1.B] 

Global x3 percentile %95 value in time series Winter 1 time step 1 time Spike 

8 Total Capacity Nominated 
[12.1.B] 

Global x1.5 percentile %95 value in time series Winter 1 time step 1 time Spike 

9 Forecasted Day-ahead 
Transfer Capacities [11.1] 

Global x3 percentile %95 value in time series Summer 1 time step 1 time Spike 

10 Forecasted Day-ahead 
Transfer Capacities [11.1] 

Global x1.5 percentile %95 value in time series Summer 1 time step 1 time Spike 

11 Forecasted Day-ahead 
Transfer Capacities [11.1] 

Global x3 percentile %95 value in time series Winter 1 time step 1 time Spike 

12 Forecasted Day-ahead 
Transfer Capacities [11.1] 

Global x1.5 percentile %95 value in time series Winter 1 time step 1 time Spike 
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13 Actual Total Load [6.1.A] Global x3 percentile %95 value in time series Summer 1 time step 4 times per month Spike 

14 Actual Total Load [6.1.A] Global x1.5 percentile %95 value in time series Summer 1 time step 4 times per month Spike 

15 Actual Total Load [6.1.A] Global x3 percentile %95 value in time series Winter 1 time step 4 times per month Spike 

16 Actual Total Load [6.1.A] Global x1.5 percentile %95 value in time series Winter 1 time step 4 times per month Spike 

17 Total Capacity Nominated 
[12.1.B] 

Global x3 percentile %95 value in time series Summer 1 time step 4 times per month Spike 

18 Total Capacity Nominated 
[12.1.B] 

Global x1.5 percentile %95 value in time series Summer 1 time step 4 times per month Spike 

19 Total Capacity Nominated 
[12.1.B] 

Global x3 percentile %95 value in time series Winter 1 time step 4 times per month Spike 

20 Total Capacity Nominated 
[12.1.B] 

Global x1.5 percentile %95 value in time series Winter 1 time step 4 times per month Spike 

21 Forecasted Day-ahead 
Transfer Capacities [11.1] 

Global x3 percentile %95 value in time series Summer 1 time step 4 times per month Spike 

22 Forecasted Day-ahead 
Transfer Capacities [11.1] 

Global x1.5 percentile %95 value in time series Summer 1 time step 4 times per month Spike 

23 Forecasted Day-ahead 
Transfer Capacities [11.1] 

Global x3 percentile %95 value in time series Winter 1 time step 4 times per month Spike 

24 Forecasted Day-ahead 
Transfer Capacities [11.1] 

Global x1.5 percentile %95 value in time series Winter 1 time step 4 times per month Spike 

25 Actual Total Load [6.1.A] Global x3 percentile %95 value in time series Summer 10 time step 2 times per month Plateau 

26 Actual Total Load [6.1.A] Global x1.5 percentile %95 value in time series Summer 10 time step 2 times per month Plateau 

27 Actual Total Load [6.1.A] Global x3 percentile %95 value in time series Winter 10 time step 2 times per month Plateau 
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28 Actual Total Load [6.1.A] Global x1.5 percentile %95 value in time series Winter 10 time step 2 times per month Plateau 

29 Total Capacity Nominated 
[12.1.B] 

Global x3 percentile %95 value in time series Summer 10 time step 2 times per month Plateau 

30 Total Capacity Nominated 
[12.1.B] 

Global x1.5 percentile %95 value in time series Summer 10 time step 2 times per month Plateau 

31 Total Capacity Nominated 
[12.1.B] 

Global x3 percentile %95 value in time series Winter 10 time step 2 times per month Plateau 

32 Total Capacity Nominated 
[12.1.B] 

Global x1.5 percentile %95 value in time series Winter 10 time step 2 times per month Plateau 

33 Actual Total Load [6.1.A] Contextual Random values in min-max range (month) Summer 1 day 1 time Daily 

34 Actual Total Load [6.1.A] Contextual Random value in min-max range (month) Winter 1 day 1 time Daily 

35 Total Capacity Nominated 
[12.1.B] 

Contextual Random value in min-max range (month) Summer 1 day 1 time  Daily 

36 Total Capacity Nominated 
[12.1.B] 

Contextual Random value in min-max range (month) Winter 1 day 1 time Daily 

37 Forecasted Day-ahead 
Transfer Capacities [11.1] 

Contextual Random value in min-max range (month) Summer 1 day 1 time  Daily 

38 Forecasted Day-ahead 
Transfer Capacities [11.1] 

Contextual Random value in min-max range (month) Winter 1 day 1 time Daily 

39 Actual Total Load [6.1.A] Contextual Random value in min-max range (month) Summer 1 day 2 times per month  Daily 

40 Actual Total Load [6.1.A] Contextual Random value in min-max range (month) Winter 1 day 2 times per month  Daily 
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41 Total Capacity Nominated 
[12.1.B] 

Contextual Random value in min-max range (month) Summer 1 day 2 times per month  Daily 

42 Total Capacity Nominated 
[12.1.B] 

Contextual Random value in min-max range (month) Winter 1 day 2 times per month   Daily 

43 Forecasted Day-ahead 
Transfer Capacities [11.1] 

Contextual Random value in min-max range (month) Summer 1 day 2 times per month   Daily 

44 Forecasted Day-ahead 
Transfer Capacities [11.1] 

Contextual Random value in min-max range (month) Winter 1 day 2 times per month Daily 

45 Actual Total Load [6.1.A] Collective Random sort of daily values Summer 1 day 1 time Daily 

46 Actual Total Load [6.1.A] Collective Random sort of daily values Winter 1 day 1 time Daily 

47 Total Capacity Nominated 
[12.1.B] 

Collective Random sort of daily values Summer 1 day 1 time Daily 

48 Total Capacity Nominated 
[12.1.B] 

Collective Random sort of daily values Winter 1 day 1 time Daily 

49 Forecasted Day-ahead 
Transfer Capacities [11.1] 

Collective Random sort of weekly values Summer 1 day 1 time  Daily 

50 Forecasted Day-ahead 
Transfer Capacities [11.1] 

Collective Random sort of weekly values Winter 1 day 1 time Daily 

51 Actual Total Load [6.1.A] Collective Random sort of daily values Summer 1 day 2 times per month  Daily 

52 Actual Total Load [6.1.A] Collective Random sort of daily values Winter 1 day 2 times per month  Daily 

53 Total Capacity Nominated 
[12.1.B] 

Collective Random sort of daily values Summer 1 day 2 times per month  Daily 

54 Total Capacity Nominated 
[12.1.B] 

Collective Random sort of daily values Winter 1 day 2 times per month  Daily 
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55 Forecasted Day-ahead 
Transfer Capacities [11.1] 

Collective Random sort of daily values Summer 1 day 2 times per month  Daily 

56 Forecasted Day-ahead 
Transfer Capacities [11.1] 

Collective Random sort of daily values Winter 1 day 2 times per month  Daily 

57 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

Global x3 percentile %95 value in time series Summer 1 time step 1 time Spike 

58 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

Global x1.5 percentile %95 value in time series Summer 1 time step 1 time Spike 

59 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

Global x3 percentile %95 value in time series Winter 1 time step 1 time Spike 

60 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

Global x1.5 percentile %95 value in time series Winter 1 time step 1 time Spike 

61 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

Global x3 percentile %95 value in time series Summer 1 time step 4 times per month Spike 

62 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

Global x1.5 percentile %95 value in time series Summer 1 time step 4 times per month Spike 

63 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

Global x3 percentile %95 value in time series Winter 1 time step 4 times per month Spike 

64 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

Global x1.5 percentile %95 value in time series Winter 1 time step 4 times per month Spike 

65 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

Global x3 percentile %95 value in time series Summer 10 time step 2 times per month Plateau 

66 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

Global x1.5 percentile %95 value in time series Summer 10 time step 2 times per month Plateau 
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67 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

Global x3 percentile %95 value in time series Winter 10 time step 2 times per month Plateau 

68 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

Global x1.5 percentile %95 value in time series Winter 10 time step 2 times per month Plateau 

69 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

Contextual Random values in min-max range (month) Summer 1 day 1 time Daily 

70 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

Contextual Random value in min-max range (month) Winter 1 day 1 time Daily 

71 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

Contextual Random value in min-max range (month) Summer 1 day 2 times per month  Daily 

72 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

Contextual Random value in min-max range (month) Winter 1 day 2 times per month  Daily 

73 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

Collective Random sort of daily values Summer 1 day 1 time Daily 

74 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

Collective Random sort of daily values Winter 1 day 1 time Daily 

75 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

Collective Random sort of daily values Summer 1 day 2 times per month  Daily 

76 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

Collective Random sort of daily values Winter 1 day 2 times per month  Daily 

77 Aggregated Generation per 
Type [16.1.B&C] Solar 

Global x3 percentile %95 value in time series Summer 1 time step 1 time Spike 

78 Aggregated Generation per 
Type [16.1.B&C] Solar 

Global x1.5 percentile %95 value in time series Summer 1 time step 1 time Spike 
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79 Aggregated Generation per 
Type [16.1.B&C] Solar 

Global x3 percentile %95 value in time series Winter 1 time step 1 time Spike 

80 Aggregated Generation per 
Type [16.1.B&C] Solar 

Global x1.5 percentile %95 value in time series Winter 1 time step 1 time Spike 

81 Aggregated Generation per 
Type [16.1.B&C] Solar 

Global x3 percentile %95 value in time series Summer 1 time step 4 times per month Spike 

82 Aggregated Generation per 
Type [16.1.B&C] Solar 

Global x1.5 percentile %95 value in time series Summer 1 time step 4 times per month Spike 

83 Aggregated Generation per 
Type [16.1.B&C] Solar 

Global x3 percentile %95 value in time series Winter 1 time step 4 times per month Spike 

84 Aggregated Generation per 
Type [16.1.B&C] Solar 

Global x1.5 percentile %95 value in time series Winter 1 time step 4 times per month Spike 

85 Aggregated Generation per 
Type [16.1.B&C] Solar 

Global x3 percentile %95 value in time series Summer 10 time step 2 times per month Plateau 

86 Aggregated Generation per 
Type [16.1.B&C] Solar 

Global x1.5 percentile %95 value in time series Summer 10 time step 2 times per month Plateau 

87 Aggregated Generation per 
Type [16.1.B&C] Solar 

Global x3 percentile %95 value in time series Winter 10 time step 2 times per month Plateau 

88 Aggregated Generation per 
Type [16.1.B&C] Solar 

Global x1.5 percentile %95 value in time series Winter 10 time step 2 times per month Plateau 

89 Aggregated Generation per 
Type [16.1.B&C] Solar 

Contextual Random values in min-max range (month) Summer 1 day 1 time Daily 

90 Aggregated Generation per 
Type [16.1.B&C] Solar 

Contextual Random value in min-max range (month) Winter 1 day 1 time Daily 
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91 Aggregated Generation per 
Type [16.1.B&C] Solar 

Contextual Random value in min-max range (month) Summer 1 day 2 times per month  Daily 

92 Aggregated Generation per 
Type [16.1.B&C] Solar 

Contextual Random value in min-max range (month) Winter 1 day 2 times per month  Daily 

93 Aggregated Generation per 
Type [16.1.B&C] Solar 

Collective Random sort of daily values Summer 1 day 1 time Daily 

94 Aggregated Generation per 
Type [16.1.B&C] Solar 

Collective Random sort of daily values Winter 1 day 1 time Daily 

95 Aggregated Generation per 
Type [16.1.B&C] Solar 

Collective Random sort of daily values Summer 1 day 2 times per month  Daily 

96 Aggregated Generation per 
Type [16.1.B&C] Solar 

Collective Random sort of daily values Winter 1 day 2 times per month  Daily 

97 Aggregated Generation per 
Type [16.1.B&C] WindOn 

Global x3 percentile %95 value in time series Summer 1 time step 1 time Spike 

98 Aggregated Generation per 
Type [16.1.B&C] WindOn 

Global x1.5 percentile %95 value in time series Summer 1 time step 1 time Spike 

99 Aggregated Generation per 
Type [16.1.B&C] WindOn 

Global x3 percentile %95 value in time series Winter 1 time step 1 time Spike 

100 Aggregated Generation per 
Type [16.1.B&C] WindOn 

Global x1.5 percentile %95 value in time series Winter 1 time step 1 time Spike 

101 Aggregated Generation per 
Type [16.1.B&C] WindOn 

Global x3 percentile %95 value in time series Summer 1 time step 4 times per month Spike 

102 Aggregated Generation per 
Type [16.1.B&C] WindOn 

Global x1.5 percentile %95 value in time series Summer 1 time step 4 times per month Spike 
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103 Aggregated Generation per 
Type [16.1.B&C] WindOn 

Global x3 percentile %95 value in time series Winter 1 time step 4 times per month Spike 

104 Aggregated Generation per 
Type [16.1.B&C] WindOn 

Global x1.5 percentile %95 value in time series Winter 1 time step 4 times per month Spike 

105 Aggregated Generation per 
Type [16.1.B&C] WindOn 

Global x3 percentile %95 value in time series Summer 10 time step 2 times per month Plateau 

106 Aggregated Generation per 
Type [16.1.B&C] WindOn 

Global x1.5 percentile %95 value in time series Summer 10 time step 2 times per month Plateau 

107 Aggregated Generation per 
Type [16.1.B&C] WindOn 

Global x3 percentile %95 value in time series Winter 10 time step 2 times per month Plateau 

108 Aggregated Generation per 
Type [16.1.B&C] WindOn 

Global x1.5 percentile %95 value in time series Winter 10 time step 2 times per month Plateau 

109 Aggregated Generation per 
Type [16.1.B&C] WindOn 

Contextual Random values in min-max range (month) Summer 1 day 1 time Daily 

110 Aggregated Generation per 
Type [16.1.B&C] WindOn 

Contextual Random value in min-max range (month) Winter 1 day 1 time Daily 

111 Aggregated Generation per 
Type [16.1.B&C] WindOn 

Contextual Random value in min-max range (month) Summer 1 day 2 times per month  Daily 

112 Aggregated Generation per 
Type [16.1.B&C] WindOn 

Contextual Random value in min-max range (month) Winter 1 day 2 times per month  Daily 

113 Aggregated Generation per 
Type [16.1.B&C] WindOn 

Collective Random sort of daily values Summer 1 day 1 time Daily 

114 Aggregated Generation per 
Type [16.1.B&C] WindOn 

Collective Random sort of daily values Winter 1 day 1 time Daily 
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115 Aggregated Generation per 
Type [16.1.B&C] WindOn 

Collective Random sort of daily values Summer 1 day 2 times per month  Daily 

116 Aggregated Generation per 
Type [16.1.B&C] WindOn 

Collective Random sort of daily values Winter 1 day 2 times per month  Daily 

(*) Syntax of the value is x times the percentile of the time series (i.e. x2 percentile %95 value, means that the outlier value will be 2 times the percentile %95 calculated 

over the specific time interval of the time series. 
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2.3.1.3 Imputation scenarios 

Synthetic gaps are used as the data provided by ENTSO-E. Synthetic data is an industry workaround to evaluate scenarios which are in the domain knowledge but with no 

available data. Synthetic gaps are created to evaluate the model under gaps scenarios not present in data. Gaps are domain specific but typical gap patterns are: 

- Multiple continuous days gaps. Five full day gaps used 

- Multiple non-continuous days gaps. Three full day gaps used with a filled days between each 

- Partial days. Three partial day gaps (12:00 to 23:00) used with a filled days between each 

- Single hours gaps. Three single hour gaps (12:00 to 13:00)  used with a filled days between each 

See synthetic gaps summary in Table 2.3.1.3.1 

 

Table 2.3.1.3.1  - Specification of gap scenarios 

Id Time series Type of gap Season Duration Pattern 

1 Actual Total Load [6.1.A] five_days winter, spring, summer, autumn 5 days 24 hours gap 

2 Actual Total Load [6.1.A] single_days winter, spring, summer, autumn 3 days 24 hours gap 

3 Actual Total Load [6.1.A] partial_day winter, spring, summer, autumn 3 days 12 hours gap 

4 Actual Total Load [6.1.A] single_hours winter, spring, summer, autumn 3 days 1 hour gap 

5 Total Capacity Nominated 
[12.1.B] 

five_days winter, spring, summer, autumn 5 days 24 hours gap 
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Id Time series Type of gap Season Duration Pattern 

6 Total Capacity Nominated 
[12.1.B] 

single_days winter, spring, summer, autumn 3 days 24 hours gap 

7 Total Capacity Nominated 
[12.1.B] 

partial_day winter, spring, summer, autumn 3 days 12 hours gap 

8 Total Capacity Nominated 
[12.1.B] 

single_hours winter, spring, summer, autumn 3 days 1 hour gap 

9 Forecasted Day-ahead 
Transfer Capacities [11.1] 

five_days winter, spring, summer, autumn 5 days 24 hours gap 

10 Forecasted Day-ahead 
Transfer Capacities [11.1] 

single_days winter, spring, summer, autumn 3 days 24 hours gap 

11 Forecasted Day-ahead 
Transfer Capacities [11.1] 

partial_day winter, spring, summer, autumn 3 days 12 hours gap 

12 Forecasted Day-ahead 
Transfer Capacities [11.1] 

single_hours winter, spring, summer, autumn 3 days 1 hour gap 

13 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

five_days winter, spring, summer, autumn 5 days 24 hours gap 

14 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

single_days winter, spring, summer, autumn 3 days 24 hours gap 

15 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

partial_day winter, spring, summer, autumn 3 days 12 hours gap 

16 Aggregated Generation per 
Type [16.1.B&C] Nuclear 

single_hours winter, spring, summer, autumn 3 days 1 hour gap 
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Id Time series Type of gap Season Duration Pattern 

17 Aggregated Generation per 
Type [16.1.B&C] Solar 

five_days winter, spring, summer, autumn 5 days 24 hours gap 

18 Aggregated Generation per 
Type [16.1.B&C] Solar 

single_days winter, spring, summer, autumn 3 days 24 hours gap 

19 Aggregated Generation per 
Type [16.1.B&C] Solar 

partial_day winter, spring, summer, autumn 3 days 12 hours gap 

20 Aggregated Generation per 
Type [16.1.B&C] Solar 

single_hours winter, spring, summer, autumn 3 days 1 hour gap 
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2.3.2 Quality evaluation indicators 

2.3.2.1 Outlier detection 

During the initial data exploration some organic potential outliers were identified. As the data provided is 

not labelled an unsupervised outlier method was proposed. The potential presence of non-labelled outliers in 

the training data can corrupt the results of the outlier detection methodology. The evaluation of the outlier 

detection algorithms using synthetic scenarios cannot be only based on the F1-score as the accuracy component 

would consider true positive outliers in the original as false positives. Recall (see Figure 2.3.2.1.1) is used In the 

evaluation of the outlier detection method using the synthetic scenarios recall. Recall  will be the main indicator 

and accuracy will be analysed in each specific case. 

 

Figure 2.3.2.1.1. F1 description [3] 
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2.3.2.2 Imputation 

As no labelled data is available the evaluation is done using forecasting evaluation and synthetic gaps data 

evaluation. Synthetic gaps are created analysing the properties of domain specific outliers (duration, interval, 

etc). Synthetic gaps are removed from the time series so missing time points are present in data. Imputation is 

done over the missing points and results are compared against real measurements. 

The evaluation criteria used for both forecasting and synthetic outliers is nRMSE (Normalized Root Mean 

Square Error): 

 

 

2.4 Evaluation results 

2.4.1 Outlier detection evaluation 

The results of the evaluation method previously described is presented as benchmarking analysis. 

Benchmarking has been done to compare the results of the outlier detection algorithm against other methods 

used in the industry. 

- Local Outlier Factor (LOF) [4]. Already introduced in baseline model residual analysis 

- Median Absolute Deviation (MAD) [5]. The Median Absolute Deviation is a robust measure of the 

variability of a univariate sample of quantitative data. It can also refer to the population parameter that 

is estimated by the MAD calculated from a sample. For a univariate data set X1, X2, ..., Xn, the MAD is 

defined as the median of the absolute deviations from the data's 

 

 

See recall benchmarking results below in Table 2.4.1.1 

Some initial considerations are required: 

- Manual curation of positives  is required in order to calculate precision so F1-score. Recall is used 

instead 

- Baseline based models are not automatically tuned to obtain best recall. Hyperparameters are 

manually curated to make it easier to describe the kind of potential outliers detected by the model. 

See samples below to identify kind of anomalies detected 
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Table 2.4.1.1  - Specification of the outlier scenarios 

Time Serie Type of Outlier LOF MAD Baseline Based 

ActualTotalLoad 
global_spike_platea
u 1 1 1 

ActualTotalLoad contextual 0.04 0 0.52 

ActualTotalLoad collective 0 0 0.3 

AggregatedGenerationPerType_NUCL
EAR 

global_spike_platea
u 1 1 0.89 

AggregatedGenerationPerType_NUCL
EAR contextual 0.12 0 0.42 

AggregatedGenerationPerType_NUCL
EAR collective 0 0 0.17 

AggregatedGenerationPerType_SOLAR 
global_spike_platea
u 0.4 1 0.9 

AggregatedGenerationPerType_SOLAR contextual 0.04 0.6 0.55 

AggregatedGenerationPerType_SOLAR collective 0 0.44 0.35 

ForecastedDayAheadTransferCapacitie
s 

global_spike_platea
u 1 1 1 

ForecastedDayAheadTransferCapacitie
s contextual 0.82 0 0.0 

ForecastedDayAheadTransferCapacitie
s collective 0 0 0.0 

TotalCapacityNominated 
global_spike_platea
u 1 1 0.78 

TotalCapacityNominated contextual 0.03 0 0.2 

TotalCapacityNominated collective 0.01 0 0.4 

 

Multiple examples of outlier detection method are available at Appendix A  - Outlier detection evaluation 

results. 

2.4.2 Imputation evaluation 

See the imputations results in Table 2.4.2.1: 
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Table 2.4.2.1  - Specification of the outlier scenarios 

TimeSerie Type of gap nRMSE 

ActualTotalLoad five_days 0.004136 

ActualTotalLoad partial_days 0.005070 

ActualTotalLoad single_days 0.006744 

ActualTotalLoad single_hours 0.001724 

AggregatedGenerationPerType_NUCLEAR five_days 0.006488 

AggregatedGenerationPerType_NUCLEAR partial_days 0.006147 

AggregatedGenerationPerType_NUCLEAR single_days 0.009065 

AggregatedGenerationPerType_NUCLEAR single_hours 0.001860 

AggregatedGenerationPerType_SOLAR five_days 0.037005 

AggregatedGenerationPerType_SOLAR partial_days 0.034263 

AggregatedGenerationPerType_SOLAR single_days 0.045540 

AggregatedGenerationPerType_SOLAR single_hours 0.011162 

ForecastedDayAheadTransferCapacities five_days 0.003999 

ForecastedDayAheadTransferCapacities partial_days 0.006220 

ForecastedDayAheadTransferCapacities single_days 0.009054 

ForecastedDayAheadTransferCapacities single_hours 0.001893 

 

Multiple examples of outlier detection method are available at Appendix A  - Imputation evaluation results
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3 Conclusions 

Conclusions regarding outlier detection: 

- Manual curation of positives is required in order to calculate precision so F1-score 

- Accuracy is highly related to the properties of the time series. As it was expected, high stochastic time 

series have worse results. 

- Accuracy in global spike and plateau outliers is quite good in all methods 

- Detection in contextual and collective outliers is mainly working in time series with clear patterns and 

trends like ActualToalLoad or AggregatedGenerationPerType. LOF could work under some specific time 

series properties. 

- Pattern based algorithms described in D3 provides better results in time series like 

ForecastedDayAheadTransferCapacities and TotalCapacityNominated 

- Baseline based algorithms detects potential (false/true) positives which should be manually reviewed 

- Automatic hyperparameter tuning must be used to improve the results once labelled data is available 

- Hyperparameter tuning can be used to generate different kinds of outlier signals. Soft and strict 

hyperparameter tuning can be used to create warning and severe outliers 

Conclusions regarding imputation: 

- Deviation is highly related to the properties of the time series. Best results are obtained in low 

stochastic time series and worse results are obtained in high stochastic time series 

- Partial day gaps and single hour gaps are best predicted as they provide daily pattern contextual 

information to the imputation method 

- Automatic hyperparameter tuning must be used to improve the results once outlier labelled data or 

extra information on gaps is available 

- Additional extra-information like holiday, specials days or specific domain specific data (weather, 

market info, time series correlation, …)   could be added to improve prediction 
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Glossary 

Capacity. Capacity is the rated continuous load-carrying ability of generation, transmission, or other 

electrical equipment, expressed in megawatts (MW) for active power or megavolt-amperes (MVA) apparent 

power. 

Demand - Consumption. Demand is the rate at which electric power is delivered to or by a system or part of 

a system, generally expressed in kilowatts (kW) or megawatts (MW), at a given instant or averaged over any 

designated interval of time. 

Deep Learning: Deep learning is a class of machine learning algorithms that  uses multiple layers to 

progressively extract higher-level features from the raw input. For example, in image processing, lower layers 

may identify edges, while higher layers may identify the concepts relevant to a human such as digits or letters 

or faces [6]. 

Precision. A metric for classification models. Precision identifies the frequency with which a model was 

correct when predicting the positive class. 

Recall. A metric for classification models that described  how many did the model correctly identify out of 

all the possible positive classes. 
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A.1 Outlier detection evaluation results 

The results per each kind of time series introduced in the evaluation description are displayed below. The 

red dots are the predicted outliers detected in the time series by the outlier detection. 

 

ActualTotalLoad.global_spike_plateau 

LOF 

 

MAD 

 

Baseline based 
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ActualTotalLoad.contextual 

LOF 

 

MAD 

 

Baseline based 
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ActualTotalLoad.collective 
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Baseline based 

 

AggregatedGenerationPerType_NUCLEAR.global_spike_plateau 

LOF 

 

MAD 
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Baseline based 

 

AggregatedGenerationPerType_NUCLEAR.contextual 

LOF 

 

MAD 

 



 

 

Copyright 2023 OneNet 

This project has received funding from the European Union’s Horizon 2020  
research and innovation programme under grant agreement No 957739      

Page 45  

 

Baseline based 

 

AggregatedGenerationPerType_NUCLEAR.collective 

LOF 

 

MAD 
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Baseline based 

 

AggregatedGenerationPerType_SOLAR.global_spike_plateau 

LOF 

 

MAD 
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Baseline based 

 

AggregatedGenerationPerType_SOLAR.contextual 

LOF 

 

MAD 
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Baseline based 

 

AggregatedGenerationPerType_SOLAR.collective 

LOF 

 

MAD 
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Baseline based 

 

TotalCapacityNominated.contextual 

LOF 

 

MAD 

 

Baseline based 
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A.2 Imputation evaluation results 

The results per each kind of time series introduced in the evaluation description are displayed below. The 

blue time series corresponds to obtained imputation results and the orange time series corresponds to expected 

imputation results, so the original time series. 

ActualTotalLoad.five_days 
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ActualTotalLoad.partial_days 
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AggregatedGenerationPerType_NUCLEAR.five_days 
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AggregatedGenerationPerType_NUCLEAR.partial_days 
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AggregatedGenerationPerType_SOLAR.five_days 
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AggregatedGenerationPerType_SOLAR.partial_days 
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ForecastedDayAheadTransferCapacities.five_days 
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ForecastedDayAheadTransferCapacities.partial_days 
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